Viscoelastic Properties and Shock Response of Coarse-Grained Models of Multiblock versus Diblock Copolymers: Insights into Dissipative Properties of Polyurea
نویسندگان
چکیده
We compare and contrast the microstructure, viscoelastic properties, and shock response of coarse-grained models of multiblock copolymer and diblock copolymers using molecular dynamics simulations. This study is motivated by the excellent dissipative and shock-mitigating properties of polyurea, speculated to arise from its multiblock chain architecture. Our microstructural analyses reveal that the multiblock copolymer microphase-separates into small, interconnected, rod-shaped, hard domains surrounded by a soft matrix, whereas the diblock copolymer forms larger, unconnected, hard domains. Our viscoelastic analyses indicate that compared with the diblock copolymer, the multiblock copolymer is not only more elastic but also more dissipative, as signified by its larger storage and loss modulus at low to intermediate frequencies. Our shock simulations and slip analyses reveal that shock waves propagate slower in the multiblock copolymer in comparison with the diblock copolymer, most likely due to the more deformable hard domains in the former system. These results suggest that the multiblock architecture of polyurea might impart polyurea with smaller, more deformable, and interconnected hard domains that lead to improved energy dissipation and lower shock speeds.
منابع مشابه
Simultaneous Iterative Boltzmann Inversion for Coarse-Graining of Polyurea
Polyurea is an alternating copolymer with excellent viscoelastic properties for dissipating shock and impact loads; however, a molecular-level understanding of how its chemistry relates to its performance remains elusive. While molecular dynamics simulations can in theory draw connections between molecular structure and viscoelastic properties, in practice the long relaxation times associated w...
متن کاملAn experimentally-based viscoelastic constitutive model for polyurea, including pressure and temperature effects
Presented here are the results of a systematic study of the viscoelastic properties of polyurea over broad ranges of strain rates and temperatures, including the high-pressure effects on the material response. Based on a set of experiments and a master curve developed by Knauss (W.G. Knauss, Viscoelastic Material Characterization relative to Constitutive and Failure Response of an Elastomer, In...
متن کاملTheoretical coarse-graining approach to bridge length scales in diblock copolymer liquids.
A microscopic theory for coarse graining diblock copolymers into dumbbells of interacting soft colloidal particles has been developed based on the solution of liquid-state integral equations. The Ornstein-Zernike equation is solved to provide a mesoscopic description of the diblock copolymer system at the level of block centers of mass, and at the level of polymer centers of mass. Analytical fo...
متن کاملWell-defined PE-b-PTFE diblock copolymers via combination of coordination chain transfer polymerization and condensation reaction: Facile preparation and surface modification of polyethylene film
In this paper, a series of well-defined polyethylene-b-polytetrafluoroethylene diblock copolymers (PE–b– PTFEs) were prepared by a coupling reaction of hydroxyl-terminated polyethylene (PE–OH) and isocyanateterminated 1H,1H-perfluoro-1-tetradecanol (PFDO–NCO). PE–OH was prepared by the coordination chain transfer polymerization using 2,6-bis[1-(2,6-diisopropylphenyl)imino ethyl] pyridine iron (...
متن کاملGrain Refinement of Dual Phase Steel via Tempering of Cold-Rolled Martensite
A microstructure consisting of ultrafine grained (UFG) ferrite with average grain size of ~ 0.7 µm and dispersed nano-sized carbides was produced by cold-rolling and tempering of the martensite starting microstructure in a low carbon steel. Subsequently, fine grained dual phase (DP) steel consisting of equiaxed ferrite grains with average size of ~ 5 µm and martensite islands with average size ...
متن کامل